
Content-Based Shape Retrieval
Sanna Heesakkers

Utrecht University

3422453

s.h.m.heesakkers@students.uu.nl

Arjen Simons

Utrecht University

1393170

a.simons1@students.uu.nl

Jasper de Winther

Utrecht University

1326236

j.dewinther@students.uu.nl

ABSTRACT
Retrieving multimedia objects can be a hard task. This paper aims

to create a Content-Based Shape Retrieval (CBSR) system which

is able to return 3D shapes that are similar to a given query shape.

We show how to pre-process shape databases [10][3] in order to

extract the features used to compare different shapes. The compari-

son results in a distance between the shapes computed using the

Euclidean or Earth mover’s distances between individual features.

An understandable visualisation of the dataset and its distances is

presented using a t-SNE plot, which clearly shows which shapes

are considered similar to one another. We show that the result-

ing CBSR system can accurately retrieve objects that have a lot of

similar geometric attributes. To calculate the sensitivity and speci-

ficity of the presented pipeline, a Receiver Operating Characteristic

(ROC) curve is computed for every class. Over the entire Labeled

PSB dataset [3], the system has an average Area Under the ROC

(AUROC) of 0.82. Some shape classes have an average AUROC up

to 0.96.

KEYWORDS
MMR, Multimedia Retrieval, 3D Shape retrieval, 3D shape matching

1 INTRODUCTION
When trying to find information on a specific subject, the Google

search engine can be used, which provides multiple sources when

provided with a few words. This technique can also be applied

to different data formats like images. In this report we describe a

pipeline which enables us to use this kind of fuzzy search for 3D

models. The pipeline is given a shape and returns an given number

of 3D models that it determines to be the most similar.

The database used to provide the shapes in the project is the

Princeton Shape Benchmark (PSB) [10] in combination with the

Labeled PSB dataset [3]. We simply combine these datasets to get a

broader range of shapes.

In Section 2, the pipeline setup is discussed. The section explains

the rendering and system architecture design, used for the rest of

the pipeline.

The following section (Section 3) covers the prepossessing steps.

All shapes must be re-meshed and normalised to have certain non

discriminating properties such as scale and position normalised.

This section describes which properties are normalised, how they

are normalised and how the distribution of these properties change

after normalising.

Section 4 aims to retrieve features that can be used to discrimi-

nate between different shapes. It focuses on both global features

that can be represented as a single real value and shape property

features which are distributions that can be represented as his-

tograms.

The proceeding section (Section 5) describes the querying stage

of the pipeline. The feature ranges will be normalised and different

distance functions will be discussed. It also covers the retrieval of a

specified number of shapes whose distances are closes to the query

shape.

Section 6 covers the pipeline’s scalability. It discusses an im-

proved data structure that allows for efficient querying over a large

dataset. It also displays an overview of the dataset in the form of

t-SNE plots.

The next section (Section 7) discusses the quality of the pipeline.

It investigates what quality measure to use to evaluate the system

as a whole. Afterwards, the results are shown and reflected upon.

Lastly (Section 8), a discussion of the results is presented to

conclude the entire process.

(a) 3D shape (b) 3D shape with face nor-
mals displayed

Figure 1: 3D rendering with Pyrenderer

2 STEP 1: WORKINGWITH 3D SHAPES
The first step in rendering shapes is to read the shape’s data. To

achieve this, the Trimesh [1] library is used. This is a native python

library for 3D mesh processing. This library is chosen because it is

python native, which makes interfacing with it easier.

We decided upon an architecture where the entire dataset is

loaded into memory at all times, and is stored in a standard list

containing our custom 𝑀𝑒𝑠ℎ𝐷𝑎𝑡𝑎 class. This 𝑀𝑒𝑠ℎ𝐷𝑎𝑡𝑎 includes

file location, Trimesh data, and multiple other computed features

of the mesh. Luckily, our dataset is approximately half a gigabyte

in size when loaded in RAM so this should not be a bottleneck.

To efficiently work with our data, the result of an entire process-

ing step (the list of𝑀𝑒𝑠ℎ𝐷𝑎𝑡𝑎 classes) is cached in a pickle file. As a

result, when loading the mesh data, the processing time went from

at least 20 seconds, to sub one second on consecutive runs. Reading

many different files causes a lot of system level overhead which

is mostly negated in our implementation after the first run. Con-

sequently, when performing multiple operations that work on the

entire dataset, the performance is bound by the operations applied

to the meshes and not the time it takes to prepare the input. For

2

example, not all meshes need to individually be loaded and parsed

when applying remeshing, but a single data-blob can be read and

interpreted as the dataset.

The actual rendering of the 3D meshes is performed using Pyren-

derer [5], a pure Python library for physically-based rendering. It

is an easy to use library that comes with intuitive controls to view

the models from different angles and distances. In addition, the

library helps to compute face and vertex normals, and supports

the visualisation of various 3D mesh attributes such as the mesh

wireframe and the face/vertex normals (see Figure 1).

Due to the significant computational cost of the later steps in

the pipeline, multithreading is an obvious first step in improving

computation times. However, Python does not natively allow mul-

tithreading due to the Global Interpreter Lock (GIL). To circumvent

this, the multithreading package was used which starts new Python

instances to bypass the GIL, which does come with a cost memory

wise. Unfortunately, the scaling also is not 1 to 1 per added core.

With a many (8) core system there was a significant speedup.

3 STEP 2: PREPROCESSING
In order to discriminate between models, certain features must

be extracted. The model’s bounding box size, translation, rotation,

vertex and face count are not relevant discriminatory factors. They

do however, influence relevant features such as surface area. To

ensure that all relevant features can be extracted fairly on every

model, these impartial features must be normalised.

In the first subsection, certain model features will be normalised

and determined. The distribution of these features in the dataset

will be investigated. The following section covers the normalisation

of the translation, orientation and scale. First, the translation will be

normalised, because the normalisation of the models’ orientation

is dependent on this. After that, the models’ orientation will be

normalised before their bounding box scales to ensure that only

the axis-aligned bounding box (AABB) has to be computed. Subse-

quently, the last subsection covers the normalisation of the meshes

their face and vertex count. This mesh resolution normalisation

step is independent from any other normalisation steps. It does not

matter whether the other normalisation steps are performed prior

to, or after the mesh resolution step.

3.1 Determine model features
For every shape in the dataset, the class, the number of faces and

vertices, the type of faces and the axis-aligned 3D bounding box are

determined. This data is used to create an overview of the shapes

and how they compare to one another.

Both the face and vertex counts have some extreme outliers. This

will become problematic when trying to calculate features which

can have Θ(𝑛2) or even Θ(𝑛3) time complexity. In table in Figure

2b we see that there are multiple objects with too high of a value

to realistically run any Θ(𝑛3) algorithm on. The distribution of the

face and vertex counts can be seen in Figure 2a.

To measure the variance of the bounding boxes, two variables

are used: the length of the bounding box diagonal and the volume

of the bounding box. The table in Figure 2b shows that the median

of both variables is relatively close to the smallest value; meanwhile

the mean is a few order of magnitudes bigger. This means that most

bounding boxes do not deviate a lot from one another, with a few

very large outliers.

3.2 Normalising the meshing resolution
The variance in number of vertices and faces makes it hard to com-

pare models in the future. Not only from a correctness point of

view, but the computational complexity will also explode when

there are too many vertices. Because of this, we decided to repeat-

edly subdivide each face into four until there are at least 1,000 faces.

This method of subdividing triangles into four, instead of three, will

keep face shapes more uniform, and minimises the number of very

thin and elongated triangles. To reduce the number of vertices to

computationally acceptable levels, quadric mesh simplification is

being performed (using the Python Fast Quadric Mesh Reduction

library [9]) as can be seen in Figure 3. This algorithm attempts to

reduce the number of faces below 5,000 but can deviate from that

on very complex meshes. This way most meshes will have between

1,000 and 5,000 faces.

(a) Plane mesh with 10,796
faces

(b) Normalised plane mesh
with 5,000 faces

Figure 3: Mesh normalisation being applied to a plane mesh

3.3 Invalid mesh removal
Some meshes have errors in them. This could be a watertight issue,

which can be resolved most of the time, or something more serious.

When determining specific features, a few models were faulty in

some way which caused their volume or surface area to be infinite,

NaN or unreasonable. Fortunately, this only happened in very few

cases, so we simply removed those meshes from our pipeline. An-

other problem with our remeshing is that it does not work all the

time. For example, it is very hard to reduce the number of faces of

a tree containing many leaves without destroying its shape. These

models which cannot be simplified further often have many holes

in them already, and thus mesh decimation would not be a good

fit. Because of this, we decided to refine our dataset by throwing

away 10% of the models with the highest ratio of non-connected

faces, and the top 5% of the models with the most faces. This way

the most problematic outliers are removed, while still keeping a

large enough dataset.

3.4 Normalising shape translations
As stated earlier, the table in Figure 2b shows that the dataset

contains some huge outliers in terms of distance from the shape’s

barycenter to the origin of the reference coordinate frame. To easily

3

(a) Histograms of dataset features.

No. vertices No. faces Surface area Compactness AABB volume OBB volume Diameter No. broken faces Distance to origin

Min 10 16 0.024 1.21e-4 2.75e-4 2.71e-4 0.19 0 2.24e-4

Max 160,940 316,498 1.35e+17 2.00e+35 8.55e+24 8.30e+24 4.63e+8 52,723 1.92e+8

Mean 5452.03 10,396.24 7.00e+13 1.84e+32 4.45e+21 4.32e+21 240,735.49 576.79 101,232.94

Median 1802 3378 1.39 31.10 0.22 0.19 1.01 42 0.61

Std 9305.39 17,883.77 3.07e+15 5.59e+33 1.95e+23 1.89e+23 1.06e+7 2291 4.37e+6

(b) Dataset statistics.

Figure 2: Dataset (1923 models) characteristics before mesh normalisation. Respectively they show the number of vertices,
number of faces, surface area, compactness, axis-aligned bounding box volume, oriented bounding box volume, diameter, the
number of broken faces and the distance from the barycenter to the origin of the reference coordinate frame.

perform other normalisation, that for example rotates the object to

normalise its orientation, the object must be translated such that

its barycenter 𝑐 is located at the origin of the reference frame. To

do this, every object point 𝑝𝑖 must be updated using formula 1.

𝑝
updated

𝑖
= 𝑝𝑖 − 𝑐 (1)

After translating the shapes in the database, the table in Figure 8b

shows that the largest distance to origin is 7.75e-13. This is very

close to zero. No barycenter seems to have a distance of exactly

zero. This seems to be caused by precision errors rather than the

barycenters actually having a small offset.

3.5 Normalising shape orientations
In the next step, the orientation of themodels is normalised. In order

to normalise the orientation, the eigenvectors that represent the

4

spread of the object must be computed. The goal of the orientation

normalisation is to align themajor eigenvector with the x-axis of the

reference coordinate system and the respective medium eigenvector

with the y-axis of the reference coordinate system. This means that

after normalisation, the axis on which the largest spread of points

on the mesh is located, is the same as the x-axis.

To compute the eigenvectors representing the spread of points

on the mesh, Principle Component Analysis (PCA) is used. This

is done using the NumPy Python library [2]. First the numpy.cov

method [6] is used to compute the covariance matrix of the shapes’

vertices. Thereafter, the covariance matrix is used as input for the

numpy.linalg.eig method [7], which computes the major, respective

medium and minor eigenvectors, and their corresponding eigenval-

ues.

To align the shape with the reference coordinate system axis,

projections are used. With 𝑝𝑖 being the unaligned shape coordinate

and the major eigenvector 𝑒1 and respective medium eigenvector

𝑒2, the formula that updates their position is:

𝑥
updated

𝑖
= 𝑝𝑖 · 𝑒1

𝑦
updated

𝑖
= 𝑝𝑖 · 𝑒2

𝑧
updated

𝑖
= 𝑝𝑖 · (𝑒1 × 𝑒2)

(2)

The barycenter is not part of the formula, because all shapes are

normalised to have their barycenter at the origin of the reference

coordinate frame.

After normalisation most meshes align properly. Figure 4 shows

an example of a mesh of which the orientation is aligned properly

after normalisation. This is however not always the case. Some

meshes are not properly aligned using this method. Figure 5b shows

an example of this. This issue could be the result of the meshes

not having uniformly distributed vertices. Figure 6a shows the

mesh of an object that was normalised properly when using the

vertices as input for the covariance matrix. It manifests a mesh that

is fairly evenly distributed in terms of vertex positions. Figure 6b

on the other hand displays a mesh that does not have a uniform

distribution of vertices on the mesh. It has two very dense areas

where the eyes are located. This causes the the PCA to return this

as the most distributed axis as shown in Figure 5b.

(a) Before normalisation (b) After normalisation using ver-
tices for the covariance matrix

Figure 4: Object m58 orientation normalisation results

(a) Before normalisation (b) After normalisation us-
ing vertices for the covari-
ance matrix

(c) After normalisation us-
ing uniform point distribu-
tion for the covariance ma-
trix

Figure 5: Object m45 orientation normalisation results

To solve the issue thatmesheswith non uniformly spread vertices

cause when computing the eigenvectors, the mesh can be sampled

uniformly. Each triangle can be sampled uniformly with a number

of points that correspond to the size of the triangle. Let 𝑣0, 𝑣1, 𝑣2, be

the three vertices of an arbitrary triangle 𝑡 . Let 𝑟1 and 𝑟2 be random

floats in the range [0, 1]. The formula [8] that uniformly generates

a random point on a triangle is:

𝑝 = (1 − √
𝑟1)𝑣0 + (√𝑟1 (1 − 𝑟2))𝑣1 + (𝑟2

√
𝑟1)𝑣2 (3)

To generate the new eigenvectors, the uniformly distributed

points on the mesh are used as input for the covariance matrix. As

a result, a lot of meshes with the previously described issues, align

properlywhen orientated using these newly computed eigenvectors.

Figure 5c shows how the model that was not normalised properly

is now aligned perfectly with the axis of the reference frame.

After using uniformly distributed points some meshes still could

not be aligned properly. Figure 7c shows an example of this. Figure

6c shows that this mesh contains a lot of overlapping faces. Since

the surface of the mesh is uniformly sampled, these areas are still

sampled more than other areas, causing the spread of points to not

be properly computed.

Having some meshes not aligned properly should not impact

future work toomuch. It can impact the computation of the oriented

bounding box (OBB) and the eccentricity for these objects. This

effect will not be too high since the values seem to still be close to

the expected value. Only if the orientation is way off, the deviating

results will cause bigger issues. Another minor issue could arise

in terms of user friendliness of the program, when the shapes

5

are displayed and the object is oriented such that it cannot be

recognised immediately.

(a) Wireframe of object m58 (b) Wireframe of object m45

(c) Wireframe of object m66

Figure 6: Mesh wireframes

(a) Before normalisation (b) After normalisation using
vertices for the covariancema-
trix

(c) After normalisation us-
ing uniform point distribu-
tion for the covariance matrix

Figure 7: Object m66 orientation normalisation results

3.6 Flipping test
To make sure all shapes are oriented the same, some shapes have to

be flipped. This is important when the shapes are displayed. When

we take horses, visually, it makes most sense when all legs point

downwards. To accomplish this, for each axis, the side with most

mass is computed. When most mass resides on the negative side

of the axis, the shape is mirrored with respect to that axis. During

the flipping test, a variable 𝑓𝑖 is computed along each axis, where

𝑖 = 0 equals x, 𝑖 = 1 equals y, and 𝑖 = 2 equals z. The two values of

𝑓𝑖 can either be −1 when the object needs to be mirrored along the

respective axis, or 1, when the object does not need to be mirrored

with respect to that axis. This value is computed using the following

formula:

𝑓𝑖 =
∑︁
𝑡

sign(𝐶𝑡,𝑖) (𝐶𝑡,𝑖)2𝐴𝑡 (4)

where the summation goes over all the mesh triangles 𝑡 , 𝐶𝑡,𝑖 is the

𝑖𝑡ℎ coordinate of triangle 𝑡 its centroid, and𝐴𝑡 is the area of triangle

𝑡 . To mirror the mesh when needed, the mesh can be scaled along

all the axis using 𝑓𝑖 :

𝑥
updated

𝑖
= 𝑥𝑖 sign(𝑓0)

𝑦
updated

𝑖
= 𝑦𝑖 sign(𝑓1)

𝑧
updated

𝑖
= 𝑧𝑖 sign(𝑓2)

(5)

Figure 9 shows object 392 before and after being flipped correctly.

(a) Before flipping (b) After flipping

Figure 9: Object 392 flip result

3.7 Normalising shape scales
The scale of the model’s axis-aligned bounding box must also be

normalised. If this is not the case, metrics such as surface area

cannot be used to accurately distinguish different types of models.

Currently, the dataset contains some big outliers in terms of scale.

The table in Figure 2b shows that the smallest AABB volume is 28

orders of magnitude smaller than the largest AABB box volume.

To normalise the scale, every model can be scaled to fit inside

of a unit cube, where its axis-aligned bounding box sizes 𝐷𝑥 , 𝐷𝑦 ,

𝐷𝑧 have a length smaller or equal to one. To accomplish this, every

object point 𝑝𝑖 must be multiplied by a scaling factor 𝜎 as shown

in formula 6.

𝐷max = max(𝐷𝑥 , 𝐷𝑦, 𝐷𝑧)
𝜎 = 1/𝐷max

𝑝
updated

𝑖
= 𝜎 · 𝑝𝑖

(6)

6

(a) Histograms of dataset features after normalising and mesh removal.

No. vertices No. faces Surface area Compactness AABB volume OBB volume Diameter No. broken faces Distance to origin

Min 457 1000 0.041 1.09 2.03e-3 2.03e-3 1 0 8.58e-18

Max 4102 5000 43.70 2.20e+5 1 1 1.70 1470 7.75e-13

Mean 1810.98 3481.58 1.66 402.18 0.27 0.24 1.09 154.14 1.59e-15

Median 1865 3587.5 1.09 24.68 0.20 0.17 1.04 28 7.51e-16

Std 761.28 1474.44 1.90 6588.66 0.22 0.20 0.12 258.12 1.90e-14

(b) Dataset statistics after normalising and mesh removal.

Figure 8: Dataset (1686 models) characteristics after mesh normalisation and mesh removal. Respectively they show the number
of vertices, number of faces, surface area, compactness, axis-aligned bounding box volume, oriented bounding box volume,
diameter, the number of broken faces and the distance from the barycenter to the origin of the reference coordinate frame.

After normalisation, the AABB volumes seem to be distributed

well. The table in Figure 8b displays a well distributed AABB volume

and diameter. The table shows that the maximum AABB volume

equals to one, which is the volume of a unit cube. The table also

shows that the minimum and maximum diameters are 1 and 1.7.

This is smaller than

√
3 (diagonal of a unit cube), which means that

every shape fits inside of a unit cube. It is also bigger or equal to

one, which means that the objects with an AABB smaller than a

unit cube, are also enlarged correctly.

4 STEP 3: FEATURE EXTRACTION
In this section, features that can be used to discriminate between

different shapes will be extracted. The first subsection aims to

extract global properties of the shape. These properties can be

represented as a single real value. The proceeding subsection targets

7

shape property descriptors. These descriptors are distributions that

can be represented as histograms.

4.1 Global properties

Variable Equation Definition

Volume
1

6
|∑𝑡𝑖 (𝑣1×𝑣2) ·𝑣3 | Calculation of the volume in-

side the mesh by adding the

volumes of every tetrahedron

formed by the triangle’s ver-

tices and the barycenter.

Compactness 𝑆3/(36𝜋𝑉 2) The relation between the sur-

face area and the volume of

an object.

3D rectangu-

larity

𝑉 /𝑉𝑂𝐵𝐵 Division of the volume of the

object by its oriented bound-

ing box volume.

Eccentricity |𝜆1 |/|𝜆3 | The major eigenvector di-

vided by the respective minor

eigenvector.

Table 1: Calculations of the global descriptors.

The 3D shapes can be categorised by extracting the global prop-

erties, such as the surface area, compactness, 3D rectangularity,

diameter and eccentricity. The equations used to calculate these

descriptors are shown in Table 1. To check if the feature extraction

was successful, two shapes which look very dissimilar are used to

compare their global descriptors. The objects that are chosen to be

compared are m100 and m702, see Figure 10, due to the expected

dissimilarities in their global descriptors. The calculated values of

these are displayed in Table 2.

The surface area is obtained by using the Trimesh library. It is

expected that object m100 has a higher value compared to m702,

which is confirmed in the table.

In the second column of the table, the compactness is displayed.

The compactness of an object indicates how close its shape is to a

sphere. The closer the compactness of an object is to 1, the more

similar the object is to a sphere with the same volume. Becausem702

is a long and thin object, the expectation is that the compactness will

be higher than the compactness of m100, because it has a rounder

shape. This is in line with the values in the table.

The calculation of the 3D rectangularity is performed to check

how similar the volume of the object is to its oriented bounding box.

To compute the OBB volume, the Trimesh library is used. Because

the volume of the OBB will always be higher than the volume of the

objects, the rectangularity will have a value between 0 and 1. In the

table it is apparent that the rectangularity of m100 is higher than

the value of m702, which means that the volume of m100 is closer

to its OBB volume than the volume of m702. The reason for this is

that there is more empty space in the OBB of m702 in comparison

to the OBB of m100.

To obtain the diameter of the shape, the distances between all

vertices is calculated and the longest distance between two points

on the surface of the mesh is the diameter. Because the objects are

Figure 10: Object m100 and m702 (left and right respectively),
which are used to compare the values of their descriptors.

both uniformly scaled, the diameters have a value within the range

[1,
√
3].

Finally, the eccentricity is calculated to obtain the spread of the

objects. The eccentricity of m702 is higher than m100, which means

that the differences between the major and minor eigenvalues are

higher for m702.

Surface area Compactness 3D rectangularity Diameter Eccentricity

m100 1.28 3.12 0.32 1.06 3.87

m702 0.041 121.65 0.0067 1.00 26.80

Table 2: Global descriptors of object m100 and m702.

4.2 3D shape property descriptors
After obtaining the five global properties for all models, five shape

property descriptors are computed. These descriptors are used to

compare all meshes

• A3 The angle between three random vertices

• D1The distance between the barycenter and a random vertex

• D2 The distance between two random vertices

• D3 The square root of area of a triangle given by three

random vertices

• D4 The cube root of volume of a tetrahedron formed by four

random vertices

To calculate these descriptors, we use 10,000 samples for D1 and

100,000 for the other descriptors using random vertices for the

calculations. The calculation of D1 is performed using less samples,

because every object has a maximum of 5,000 vertices.

The values of A3 are computed using:

𝜃 = arccos (𝑣1 · 𝑣2) (7)

where 𝜃 is the angle and 𝑣1 and 𝑣2 the vectors from one random

vertex to two other randomly chosen vertices. For 100,000 samples,

this means that three random vertices are considered 100,000 times.

In total, 300,000 vertices are considered whilst computing A3.

To compute D1, a distance method is used to obtain the Euclidean

distance of 10,000 random vertices to the barycenter of the models.

D2 is measured by randomly selecting two vertices on the object

and calculating the distance between them. Since 100,000 samples

are taken, this means that in total 200,000 vertices are considered.

8

For the calculation of the square root area, equation 8 is used.

𝐴 =

√︃√︁
𝑠 (𝑠 − |𝑣1 |) (𝑠 − |𝑣2 |) (𝑠 − |𝑣3 |) (8)

𝑠 =
1

2

(|𝑣1 | + |𝑣2 | + |𝑣3 |) (9)

with 𝐴 the area, 𝑠 the semiperimeter and 𝑣1, 𝑣2 and 𝑣3 the vectors

between three randomly chosen vertices. For this calculation a total

of 300,000 vertices are considered for 100,000 samples.

Finally, the cube root of volume of a tetrahedron is obtained

using equation 10.

𝑉 =
3

√︂
1

6

| (𝑣1 − 𝑣4) · ((𝑣2 − 𝑣4) × (𝑣3 − 𝑣4)) | (10)

In this equation 𝑉 is the volume of the mesh and 𝑣1, 𝑣2, 𝑣3 and

𝑣4 are the vectors which define the tetrahedron. Because 100,000

tetrahedra are considered, a total of 400,000 random vertices are

chosen.

A histogram of every shape class containing all objects per class

is created for every shape descriptor. The histograms are displayed

in Appendix A.

To check whether the histograms are good, we compared the

A3 histogram of two geometrically similar shapes and one geo-

metrically different shape. The similar shapes are chosen from the

Airplane and Bird class and a different shape from the Mech class,

as displayed in Figure 11. As expected, the histograms of the plane

and bird are very similar, due to their geometric similarities. The

histogram of themech has a very different shape, because the angles

between three random points in a cube will be bigger compared to

the angles in the plane and bird.

5 STEP 4: QUERYING
In this section, a Content-Based Shape Retrieval (CBSR) system is

implemented, in which for a given query shape the best matching

shapes are found. In the first subsection we describe how to nor-

malise the ranges of all features, then the custom distance function

is explained, and lastly we compare two distance functions. Before

actually querying anything, a feature vector for the query shape is

computed, using the global and shape descriptors. This means that

the elements in the vector consists of the surface area, compactness,

rectangularity, diameter, eccentricity, and the histograms of the

shape descriptors A3, D1, D2, D3 and D4. Next, the feature vectors

of the remaining shapes in the database are compared to the vector

of the query shape. This is done by computing the distance between

the query vector and the other vectors. In the last subsection, a com-

parison is given between the query results of our distance metric

and a metric using only Euclidean distance.

(a) Histogram of the A3 shape descriptor
of a shape in the Airplane class.

(b) A shape from the
Airplane class.

(c) Histogram of the A3 shape descriptor
of a shape in the Bird class.

(d) A shape from the
Bird class.

(e) Histogram of the A3 shape descriptor
of a shape in the Mech class.

(f) A shape from the
Mech class.

Figure 11: Both plane and bird have roughly the same A3
shape descriptor histogram, and the mech is quite different,
as expected.

5.1 Normalising feature ranges
As mentioned, the extracted shape features are used as components

of the distance metric that indicates how dissimilar two shapes are

from one another. In order to do this, the extracted features must be

normalised. To account for large outliers, the global scalar features

are normalised using standardisation. Let F be a scalar feature of a

given shape. Then f is the mean of that feature computed over the

entire dataset and 𝜎 is the standard deviation of that feature. The

normalised feature value of a given shape is then computed using

the following formula:

F
normalised

=
F − f

𝜎
(11)

The histogram features are normalised differently. Every bin 𝑏 of

a given histogram ℎ is normalised to be within the range [0, 1].

9

The normalised bin of a histogram is computed using the following

formula:

𝑏
normalised

=
𝑏∫
ℎ

(12)

where

∫
ℎ is the summation of all the bins of ℎ.

5.2 Computing distances
After normalising the vectors, the distance between every element

can be calculated. For the first five elements, containing global

descriptors, a simple Euclidean distance (𝐿2) calculation is used:

𝐿2 =

√√√
5∑︁

𝑖=1

|𝑣1 (𝑖) − 𝑣2 (𝑖) |2 (13)

where 𝑣1 and 𝑣2 are the two feature vectors that are compared. For

the last five elements, containing the shape descriptor histograms,

an Earth mover’s distance (EMD) calculation is performed:

EMD =

∑
𝑖 𝑗 𝑓𝑖 𝑗𝑑𝑖 𝑗∑
𝑖 𝑗 𝑓𝑖 𝑗

, with 𝑑𝑖 𝑗 = |𝑖 − 𝑗 | (14)

with 𝑓𝑖 𝑗 being the flow between the bins 𝑖 and 𝑗 of two histograms

over distance 𝑑𝑖 𝑗 .

After calculating the distances between the query vector and the

feature vector of the other shapes in the database, these distances

can be sorted from low to high. The lower the distance, the more

similar a shape is to the query shape. Four examples of query shapes

for which their most similar shapes are found, are presented in

Figure 12. For the first two query shapes (teddybear and fish) our

distance metric shows mostly good results with five of the six

shapes being in the same class as the query shape. For the Cup class

the results are even better since all the returned shapes are cups.

However, for the last query shape (octopus) the most similar objects

are not in the same class. This is because the extracted features

can not accurately describe an octopus. An octopus has a shape for

which concavity should be included in the features, which has not

been done.

5.3 Distance metric comparison
In Section 5.1 a combination of Euclidean distance and EMD was

used to find similar shapes to a query shape. To compare the results

of our "custom"methodwith the plain Euclidean norm, a query table

is created using the same query shapes. The results are presented

in Figure 13. The 𝐿2 method looks worse in comparison with our

distance metric used in Figure 12. For example, our distance metric

for the first shape (teddybear) results in five other shapes which are

in the same shape class as the query shape. Using the 𝐿2 method

results in only two shapes which are in the same shape class as the

query shape. Furthermore, these two correct results do not have the

shortest distance to the query shape. An explanation for why our

results perform better than the 𝐿2 results, is because a calculation

of the distances between the shape descriptors is more accurate

using EMD compared to Euclidean distance. This is because the

EMD tries to fit the shape descriptor histograms (see Appendix A)

of the query object with the other, by using the curvature of the

distribution, instead of the exact pairwise bin levels. This negates

issues when two histograms have the same shape, but are shifted

slightly. The EMD is a more accurate measure for our purposes

than the Euclidian distance since the shape of the histogram is more

important than the shift.

Figure 12: Query results using our "custom" distance metric.

10

Figure 13: Query results using Euclidean distance.

6 STEP 5: SCALABILITY
In order to find the most similar shapes we could calculate the

distance between every shape any time there is a new query. How-

ever this would be slow with a large enough dataset. To circum-

vent this issue, we find the k-Nearest Neighbours (k-NN) using

the Python library SciPy [11]. This is a fast implementation of the

k-NN algorithm using a KDTree. In our relatively small dataset

this did not matter that much as queries went from 0.18s to 0.11s

on average when going from brute force to k-NN respectively. On

larger datasets the KDTree structure should result in large perfor-

mance increases since the query time complexity goes from 𝑂 (𝑛)
to 𝑂 (log𝑛).

6.1 Dimensionality reduction
To get greater insight into our retrieval pipeline we decided to

generate t-SNE plots [4] (see Figure 14). Because the PSB consists

of broad shape classes, we decided to continue our analysis and

visualisation with the Labeled PSB (see Figure 15). Every class has

been given a different colour to easily differentiate between them.

If the shapes of the same class are clustered together, this means

that likely a good query result will be given. While standard t-SNE

plots could give insight into the quality of our distance metric by

visualising clusters, it does not give an intuitive overview as to

what the shapes look like, in these plots. So a t-SNE plot of all 3D

rendered shapes of the Labeled PSB was also created. This plot is

interactive, and a snapshot can be seen in Figure 16. The result of

t-SNE has not been used as a pre-processing step before querying.

This is done because performance was not an issue in the first place.

Figure 14: A t-SNE plot showing clusters of both the labeled
dataset and the PSB. There is no distinction being made be-
tween the subclasses, so vehicle contains cars, hot air bal-
loons, planes andmore. That is why this t-SNE plot is messier
than Figure 15.

11

Figure 15: A t-SNE plot showing clusters of the labeled
dataset.

7 STEP 6: EVALUATION
In this section, an evaluation of the CBSR system is given. To do this,

the shapes’ labels are used as ground truth for our classification

problem. The PSB dataset did not come with very specific class

labels. Both cars, helicopters and hot air balloons reside in the

vehicle class. This means that returning a car when querying for a

helicopter would result in a correct result if only the class labels are

used to evaluate the results. This should not be the case since a car

and a helicopter would be considered to be quite distinct from one

another. Contrary to the Princeton Shape Benchmark dataset, the

Labeled PSB dataset does have specific labels with exactly twenty

shapes per label. It contains, for example, a bird and octopus class

instead of a generic animal class. The fact that every class has the

same number of shapes makes for a fair, per class, evaluation.

7.1 Quality analyses
To evaluate the quality of the CBSR system, sensitivity and speci-

ficity will be used as quality measures, which have the following

calculation:

Sensitivity =
True Positives

True Positives + False Negatives

(15)

Specificity =
True Negative

False Positives + True Negatives

(16)

These quality measures explain all the basic metrics - True Pos-

itives, False Positives, True Negatives and False negatives - in an

way that can more easily be interpreted. An extended version of

this, accounts for the fact that the query size in the CBSR system

can change. This extended version is the Receiver Operating Char-

acteristic (ROC) curve. The ROC curve also allows for a visual

interpretation of the results. To allow for quick comparisons in

quality between different parts of the system the Area Under the

ROC (AUROC) will also be used.

Figure 16: A t-SNE plot showing 3D shapes. Most notably, mechs (lilac/grey) are very clustered in the top-right, glasses (dark
blue) are at the top-center and bottom-left, and octopuses (grey/green) are quite distributed throughout the dataset.

12

Figure 18 shows that the AUROC of the CBSR system as a whole

is 0.82 (Table 3). The ROC curve indicates that the system favours

specificity over sensitivity since the number of False Positives is

minimised more than the number of False Negatives. The t-SNE

plot in Figure 16 also shows that a lot of shapes from similar classes

such as ants, cups and fishes, are clustered together.

Figure 17a shows that the Mech class performs really well with

an average AUROC of 0.96. The shapes in the Mech class are all

very similar in a topological sense. They are cubes with a tube

coming out at one side. The Mech shape that performs worse than

the others has a tube that is way thinner than the tubes of the other

Mech classes. The t-SNE plot in Figure 16 also shows that all Mech

shapes are located on the top right, with one Mech shape being

located a bit more to the bottom left next to the shapes from the

Bust class.

The CBSR system does not perform as well on the Glasses class

(Figure 17b). Table 3 shows the AUROC to be 0.57. The ROC curve

reflects this, as some glasses perform worse than returning random

shapes for some values of 𝑘 . When we study the t-SNE plot in

Figure 16, two clusters of shapes from the Glasses class can be seen;

one in the top middle and one in the bottom left. Figure 19a shows

all the glasses in the dataset. It can be seen that some glasses have

arms that almost align with the front frame, whilst other glasses

have arms at an angle close to 90
◦
. This causes a huge difference

in eccentricity shown in Figure 19b. This difference also explains

the two clusters in the t-SNE plot, where glasses with arms that are

angled in a similar way are clustered together.

Shape AUROC

Airplane 0.86

Ant 0.86

Armadillo 0.83

Bearing 0.60

Bird 0.69

Bust 0.90

Chair 0.91

Cup 0.75

Fish 0.87

Fourleg 0.86

Glasses 0.57
Hand 0.79

Human 0.76

Mech 0.96
Octopus 0.81

Plier 0.83

Table 0.82

Teddy 0.96
Vase 0.85

average 0.82

Table 3: The mean AUROC for each shape class from the
Labeled Princeton dataset, with the global average.

(a) Mech class (b) Glasses class

Figure 17: The class with the highest and lowest AUROC
score, left and right respectively.

Figure 18: The shape of the mean ROC taken over all the
shapes.

(a) Glasses similarity from top left to bottom
right.

(b) Influence on distance per descriptor be-
tween input shape and query results.

Figure 19: In subfigure (a) we see the results of a query, and
in subfigure (b) the descriptors which influenced this query.

13

7.2 Distance visualisation
Some classes are significantly better than others as can be seen

in Figure 17. Additional visualisations are made, specifically to

find the causes of observed issues, for example, with the Glasses

class. Namely, it is useful to see which features contribute to the

final distance between two objects, this way it is possible to tweak

features and gain insight in the results.

8 DISCUSSION
The CBSR system performs quite well overall, with an AUROC of

0.82. It seems to favour specificity over sensitivity. The averaged

ROC curve over the whole system shows that the number of False

Positives is minimised more than the number of False Negatives.

It can be seen that the CBSR system performs really well on

shape classes that contain lots of shapes that are, in a topological

sense, very similar. Examples are the Mech and Teddy classes. All

shapes in these classes are very similar, as opposed to classes such

as Glasses. Both the Mech and the Teddy class have an AUROC

of 0.96 which means they almost perform perfectly on the tested

dataset.

The CBSR system also has a few limitations. One of them is the

discrimination between shapes that we would perceive as ‘different’,

but have lots of topological similarities. An example of this is the

Bird class. It deems a lot of planes to be more similar than other

birds. The system currently does not take very refined features into

account. Which could limit the quality of these search results.

Another limitation has the opposite problem. These are shapes

that would be perceived to be similar by humans whilst having

more topological differences. The Glasses class is an example of

this. Some glasses are very elongated resulting in a high distance

when compared to other glasses that could be perceived as similar.

This seems to not only be a problem in our CBSR system, but a

general problem MMR systems tend to have. A feature that in this

specific problem could differentiate more between birds and planes

is global curvature. Planes are all very similar in terms of curvature,

which would result in different values for the birds.

The last major limitation comes from shapes that have topologi-

cal properties which are not used as part of the distance function.

The Octopus class is an example of this. These shapes have lots

of concavities, which is a shape property that is not taken into

account. Therefore shapes such as the octopuses tend to have poor

query results.

8.1 Conclusion
We presented a Content-Based Shape Retrieval system that man-

ages to retrieve a given amount of shapes that are most similar

to the query shape. For objects that have very distinct geometric

features, the system performs really well. For other shapes that

are topologically very similar to shapes from other classes or have

features that the system doesn’t account for, the system does not

yet perform optimally.

REFERENCES
[1] Michael Dawson-Haggerty. Trimesh. 2022. url: https://trimsh.org/.

[2] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/

10.1038/s41586-020-2649-2.

[3] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. “Learning 3D

Mesh Segmentation and Labeling”. In: ACM Transactions on Graphics 29.3
(2010).

[4] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”.

In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605. url: http:

//www.jmlr.org/papers/v9/vandermaaten08a.html.

[5] Matthew Matl. Pyrenderer. 2018. url: https://pyrender.readthedocs.io/.
[6] Numpy. numpy.cov. 2022. url: https : / /numpy.org /doc / stable / reference /

generated/numpy.cov.html.

[7] Numpy. numpy.linalg.eig. 2022. url: https://numpy.org/doc/stable/reference/

generated/numpy.linalg.eig.html.

[8] Robert Osada et al. “Shape Distributions”. In: ACM Transactions on Graphics
21.4 (Oct. 2002), pp. 807–832.

[9] pyfqmr : Python Fast Quadric Mesh Reduction. 2022. url: https://github.com/

Kramer84/pyfqmr-Fast-Quadric-Mesh-Reduction.

[10] “The Princeton Shape Benchmark”. In: Proceedings of the Shape Modeling Inter-
national 2004. SMI ’04. USA: IEEE Computer Society, 2004, pp. 167–178. isbn:

0769520758.

[11] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Comput-

ing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

https://trimsh.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://pyrender.readthedocs.io/
https://numpy.org/doc/stable/reference/generated/numpy.cov.html
https://numpy.org/doc/stable/reference/generated/numpy.cov.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
https://github.com/Kramer84/pyfqmr-Fast-Quadric-Mesh-Reduction
https://github.com/Kramer84/pyfqmr-Fast-Quadric-Mesh-Reduction
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

14

Appendices

A SHAPE DESCRIPTORS

(a) Animal class (b) Building class (c) Furniture class

(d) Household class (e) Miscellaneous class (f) Plant class

(g) Vehicle class

Figure 20: A3 histograms of every sample class of the Princeton Shape Benchmark

15

(a) Airplane class (b) Ant class (c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class (g) Chair class (h) Cup class

(i) Fish class (j) Fourleg class (k) Glasses class (l) Hand class

(m) Human class (n) Mech class (o) Octopus class (p) Plier class

(q) Table class (r) Teddy class (s) Vase class

Figure 21: A3 histograms of every sample class of the Labeled Princeton Shape Benchmark

16

(a) Animal class (b) Building class

(c) Furniture class (d) Household class

(e) Miscellaneous class (f) Plant class

(g) Vehicle class

Figure 22: D1 histograms of every sample class of the Princeton Shape Benchmark

17

(a) Airplane class (b) Ant class (c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class (g) Chair class (h) Cup class

(i) Fish class (j) Fourleg class (k) Glasses class (l) Hand class

(m) Human class (n) Mech class (o) Octopus class (p) Plier class

(q) Table class (r) Teddy class (s) Vase class

Figure 23: D1 histograms of every sample class of the Labeled Princeton Shape Benchmark

18

(a) Animal class (b) Building class

(c) Furniture class (d) Household class

(e) Miscellaneous class (f) Plant class

(g) Vehicle class

Figure 24: D2 histograms of every sample class of the Princeton Shape Benchmark

19

(a) Airplane class (b) Ant class (c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class (g) Chair class (h) Cup class

(i) Fish class (j) Fourleg class (k) Glasses class (l) Hand class

(m) Human class (n) Mech class (o) Octopus class (p) Plier class

(q) Table class (r) Teddy class (s) Vase class

Figure 25: D2 histograms of every sample class of the Labeled Princeton Shape Benchmark

20

(a) Animal class (b) Building class

(c) Furniture class (d) Household class

(e) Miscellaneous class (f) Plant class

(g) Vehicle class

Figure 26: D3 histograms of every sample class of the Princeton Shape Benchmark

21

(a) Airplane class (b) Ant class (c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class (g) Chair class (h) Cup class

(i) Fish class (j) Fourleg class (k) Glasses class (l) Hand class

(m) Human class (n) Mech class (o) Octopus class (p) Plier class

(q) Table class (r) Teddy class (s) Vase class

Figure 27: D3 histograms of every sample class of the Labeled Princeton Shape Benchmark

22

(a) Animal class (b) Building class

(c) Furniture class (d) Household class

(e) Miscellaneous class (f) Plant class

(g) Vehicle class

Figure 28: D4 histograms of every sample class of the Princeton Shape Benchmark

23

(a) Airplane class (b) Ant class (c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class (g) Chair class (h) Cup class

(i) Fish class (j) Fourleg class (k) Glasses class (l) Hand class

(m) Human class (n) Mech class (o) Octopus class (p) Plier class

(q) Table class (r) Teddy class (s) Vase class

Figure 29: D4 histograms of every sample class of the Labeled Princeton Shape Benchmark

24

B RELATIVE OPERATING CHARACTERISTICS

25

(a) Airplane class (b) Ant class

(c) Armadillo class (d) Bearing class

(e) Bird class (f) Bust class

(g) Chair class

26

(h) Cup class (i) Fish class

(j) Fourleg class (k) Glasses class

(l) Hand class (m) Human class

(n) Mech class

27

(o) Octopus class (p) Plier class

(q) Table class (r) Teddy class

(s) Vase class

Figure 30: Relative Operating Characteristics of every sample class of the Labeled Princeton Shape Benchmark

	Abstract
	1 Introduction
	2 Step 1: Working with 3D shapes
	3 Step 2: Preprocessing
	3.1 Determine model features
	3.2 Normalising the meshing resolution
	3.3 Invalid mesh removal
	3.4 Normalising shape translations
	3.5 Normalising shape orientations
	3.6 Flipping test
	3.7 Normalising shape scales

	4 Step 3: Feature extraction
	4.1 Global properties
	4.2 3D shape property descriptors

	5 Step 4: Querying
	5.1 Normalising feature ranges
	5.2 Computing distances
	5.3 Distance metric comparison

	6 Step 5: Scalability
	6.1 Dimensionality reduction

	7 Step 6: Evaluation
	7.1 Quality analyses
	7.2 Distance visualisation

	8 Discussion
	8.1 Conclusion

	Appendices
	A Shape descriptors
	B Relative Operating Characteristics

